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A Penetrable Dielectric Waveguide with
Periodically Varying Circular

Cross Section

S. LENNART G. LUNDQVIST

Abstract —For a penetrable dielectric wavegnide with a periodically

varying circular cross section, the modes that are exponentially decreasing

in the cladding are considered. Their axial wavenumbers are determined by

the null field approach and some plots are given showing their frequency

dependence. From the numerical results, it k observed that two modes

propagating in opposite directions interact destructively when the real parts

of their axiaf wavenumbers differ by a multiple of the wavenumber of the

corrugations. Both an upper and a lower cutoff frequency exists above

(below) which only leaky modes exist.

I. INTRODUCTION

I N THE PRESENT PAPER, we study a penetrable

dielectric cylinder with a periodically varying circular

cross section. This waveguide, with interior dielectric con-

stant ~_ and permeability p_, is embedded in an infinite

medium with the corresponding exterior constants c+ and

p+, where p+< + < p-c –. The geometry is depicted in Fig.
1, where the wall is denoted by S and the outward unit

normal by fi.

We are primarily interested in guided waves, i.e., modes

that are exponentially decreasing outside S. These modes

can be of two types, either propagating or exponentially

decaying along the waveguide. The existence of frequency

domains in which no propagating modes exist is used in

practical devices such as the corrugated feedback laser [1].

For further practical applications and a more general

treatment of the two-dimensional corrugated waveguide,

we refer to Elachi and Yeh [2] and Peng et al. [3]. In

addition to these two kinds of modes which are bounded

to the waveguide, there also exist leaky modes, which are

exponentially increasing outside S and have only a re-

stricted physical interpretation.

The straight dielectric waveguide has been addressed by

an extensive number of authors from both a theoretical

and an experimental point of view; we refer to Clarricoats

[4] and .Marcuse [5] and the references cited therein. There

exist some recent investigations that consider dielectric

waveguides with a periodically varying circular cross sec-

tion [6], [7].

In the present paper, we make use of the null-field
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Fig. 1. The geometry of the corrugated waveguide with the period of

the corrugations equal to the mean radius.

approach (T-matrix method). This method was introduced

by Waterman [:8], [9] for electromagnetic scattering prob-

lems and has adso been extended to the scattering by a

periodic surface by the same author [10]. This method has

subsequently been used to investigate several different

problems involving corrugated surfaces [11] -[15]1. In the

null-field approach, it is also possible to consider a scatterer

inside or outside the waveguide [16], [17] or a finite clad-

ding.

From the numerical results shown below, it is observed

that when the axial wavenumber exceeds the wavenumber

of the wall, all modes become leaky. Thus, the corrugation

introduces an upper cutoff frequency, above which no

exponentially decreasing (in the radial direction) solution

exists in the cladding. Furthermore, two types of stop-

bands exist, where the solution is exponentially decreasing

along the cylinder. The first one appears when the real

parts of two axial wavenumbers differ by a multiple of the

wavelength of the wall. The emergence of this type of

stopband is just an effect of the ordinary Bragg (coupling

between modes propagating in opposite directions. In the

second type of stopband, the axial wavenumbers do not

satisfy any simple relation.

II. METHOD OF SOLUTION

Consider a cylindrical surface S with periodically vary-

ing circular cross section and introduce cylindrical I coordi-

nates (p, ~, z). ‘rhe surface is assumed penetrable, and all

quantities inside (outside) the cylinder will be indicated by

a minus (plus) sign. The time harmonic dependence e – ‘“t

is assumed anfl suppressed throughout this paper. The

electric fields E ~ (7) in a homogeneous, isotropic., lossless
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medium satisfy the homogeneous vector Hehnholtz equa-
tion

vxvx F+(F) –k@+(7)=o (1)— —

where k: = a2c ● p +; t + are the dielectric constants and
p + the permeab~liti&. The boundary conditions at S re-
q~ire that the tangential parts of the electric and magnetic
fields be continuous

ftx F_(7’)=fix E+(F)

2x(vx E(7)) =yfix(vx F+(F)) (2)

where y = p_ /p +, and fi is the normal unit vector point-
ing from the boundary into the exterior domain. The
magnetic fields satisfy the same wave equation but with
y = ~_/c + in the boundary condition. Since they are for-
mally equivalent, it is sufficient to only consider electric
fields explicitly.

The introduction of a unit source, or any superposition
of such sources, outside S and an application of Green’s
theorem in the two regions give

J~+(F)+V X G(V’;k+)fi’xI?+(F’’)ds’
s

J+k~2v XV X G(F,7’’; k+)
s

{

~+(7) 7’outside S ~3a)fi’ X[V’ xi+(~)] ds’=
o 7’inside S

–V xjG(F, F’; k_)i?’xz?(7’’)ds’
s

J–k:2v XV X G(F, F’; k_)
s

(~_(7) 7 inside S
ii’x[v’xi_ (7’)] ds’= (3b)

o Foutside S

where l?+ (7) is the incoming field from the sources and
G(; F’; k) is the free-space Green function:

~iklF—7

G(F, F’’;k)=
4?717– PI “

(4)

Now introduce the cylindrical vector wave functions ~,0~,
defined as

~,o~(h,k;~)

where cm= 2 —8~O; H(lJ denotes the Hankel function of
the first kind and order~m; q = (k2 – h2)1/2 with Im q z O;
T =1, 2 (for TE and TM modes); and u = e,o [for cos(m$)
and sin (M+)]. For convenience, we will henceforth employ
the multi-index j = Turn. The expansion of the free-space
Green dyadic is [16]

fG(F, F’’;k)

=i~J” + )+(h, k;~>)dh+~ti (6)Re~~(h, k; r< Xj
J —w

where 1:= is an irrotational dyadic; 1-is the unit dyadic;
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7<( 7’. ) denotes the F’,7“ with the smaller (greater) value of
p and p’; and Re ~J is obtained from ~, by replacing the
Hankel function by a Bessel function m (5). The dagger
indicates a shift from ez~z to e –‘~z before the curl op-
erators in (5) are applied. This dagger could equally well
be situated on ~J as on Re j7J.

We expand the incoming field in {Re ~J } inside the
inscribed cylinder of S

and the scattered field in {~J } outside the circumscribed
cylinder of S

(8)

where the poles of ~(h) will eventually determine the axial
wavenumbers of the guided waves, We insert the expan-
sion of the incoming field into the lower equation of (3a),
the expansion of the scattered field into the upper equa-
tion of (3a), the boundary conditions into the lower equa-
tion of (3b), and the expansion of the Green function into
both of the integral representations. The resulting relations
are

.[fi’x~+( ~’)] dhds’+k~2v XV

@x(v’x~+ (7’’) )]dhds’

k+; F“)

Foutside S

.[#x~+(F’)]dhds’

=k:2yv XV X&/m ~j(h, k_; F)
—w

Re~j(h, k_; F’). [il’x(v’ x~+(F’))]dhds’

Foutside S. (9)
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From the definition of the cylindrical vector wave func-

tions, it follows that

v xz,.m(k,k~) =E.m(h>k;~) (lo)

with ~‘ # ~. The linear independence of the { ~j } and

{Re ZJ } systems then implies

aJ(h)=– z%+J[V’X~J(A, k+;7’)] .[fi’Xi+(7’)]ds’
s

— ik ~ J( ~j h,k+;7’). [iVx(v’x~+ (7’’))] d.’
s

~(h) =ik+~[v’ xRe~~(h, k+; F’)] .[fi’x~+(7’’)]ds’

+iksJ (+ Re~j h, k+;? )
s

.[fi’x(v’ xE+(7’))]ds’

J[ v’XRe~~(h, k_;7’)] .[fi’x~+(F’)]ds’
s

—– –yf Rezj(h, k_;7’)” [il’x(v’xl?+ (F’))] ds’.
s

We now expand the surface fields

equations in some complete systems

fi’X[V’Xi+(~)] =~~m a,, (h’)
1’ –m

(11)

appearing in these

fi’x[v’ xfi(Iz’;F’)]:+

The systems {~} and { ~~ } can, for instance, be selected

as the trigonometric system

the regular system

~= ReZJ(k_) (14a)

or the outgoing system

~=i,(k+). (14b)

The expansion (14a) gives a valid representation of the

field in the whole interior domain and (14b) is valid in the

whole exterior domain (cf. Millar [18]).

By inserting the expanded fields in (11), the coefficients

of the incoming and scattered fields become

aJ(h) =i~,~w [Qfl(h, h’)~J, (h’)

.i’ ‘m

+<~j~(h,h’)aj(h’)]~

$(h)=-iz~y [ReQ~(h, h’)$(h’)
./J –CO

+lReQjY(h, h’)aJ(/z’)]~

O=~~w [ReQj7(h, h’)/3,, (h’)
/ —m

~yReQj7(h, h’)aJ,(h’)]~ (15)

where

Q;$(h, h’)= -k+ f7~(h, k+; ~)

@x{v’x~(h’;F’)) ]ds’

Qj:(h, h’)=–k: J[ v’xz~(h, kt; F’)]

.[f?’x~~(h’; F)] ds’ (16)

and in Re QJJ, R j?] replaces Z!. Eliminating the a – and
~ – coefficients in (15) gives the scattered field in terms of

the incoming field, and this relation can be written as (in

obvious operator notation)

~= [y ReQp+(Re Q~-)-lRe Qa-– ReQ”+]

.[-yQ~+(ReQ~-)-l ReQa-+Qa+]-l~. (IT)

Thus, the scattering problem is formally solved. The poles

of $(h) determine the axial wavenumbers h of the guided

waves [11] and will occur where

det(yQfl-F (Re Q~” )-lRe Q”- - Q“+)(h) = O. (18)

The computation of the Q matrix is discussed by

Bostrom [11], so only the final results are given here. The

rotational symmetry of this specific problem gives a decou-

pling between even ( ro = 10, 2e) and odd (m= le, 20)

modes and a Kronecker delta 8~~, when the azimuthal

integration is performed. The periodicity in the z direction

makes it possible to reduce the integration to one period

(– a, a), and after a few substitutions, the Q matrices

reappear as

Qf~~~~(h) = – k+n/a jaZ!m(h+Wu,k,v)

[2 X(V :~/Jh+n%r/a; Z))]Z
nP

Q$Y?!3(h) = -k+r/a~a [V Xji&(h+nr/a,k+; z)]

[i? X@~(~+n’77/a; z)] Z (19)
‘P
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where nP = 8. fl; the @ dependence of ~ and ~j is to be
omitted; the azimuthal parity is suppressed; and n and n‘
run over all integers.

The axial wavenumber h of the guided waves is not
unique, since if h gives a solution, then h + n ~/a (for any
n) will also give a solution. For small corrugations, Marcuse
and Derosier [19] have proved that modes become ex-
ponentially decreasing along the cylinder when their axial
wavenumbers differ by a multiple of the wavelength of the
wall (n ~/a) and that they propagate in opposite direc-
tions.

The essential part of the exterior wave can be written as
a summation of terms of the form

~~l)(q~p) ~in~Z/a forn=O,l, –1,2, –2,... (20)
where the arguments in the Hankel functions are q: = k:
– (h + n n/a)2. In order to have an exponentially decreas-
ing mode outside the cylinder, it is sufficient, that Im q. >0
for all n. If the imaginary pirt of h is zero, (h+ nT/a)2
must be greater than k ~ for all n, which is only possible
for k+ less than r/2a.

III. NUMERICALRESULTS

For the numerical illustrations, we have taken the wall
corrugation to vary sinusoidally, with the period of the
corrugations equal to the mean radius:

p(Z) =a+dc0s(29rz/a). (21)

Further, we impose the commonly valid restriction p.= p +
and only investigate the axially symmetric mode of lowest
order. Four different corrugations are considered: d/a =
0.00, 0.10, 0.20, and 0.30; in the figures, they are denoted
by O, 1,2, and 3, respectively. For the plotted solutions, all
q.= (k! – (h + nr/a )2)1/2 have Im q.s b, which implies
that the solutions are exponentially decreasing outside S’.
For a computation of leaky modes with Im qa <0 for some
n, we refer to Lundqvist [12], where the exterior acoustic
problem is investigated.

In Fig. 2, the real part of the axial wavenumber is
plotted as a function of the normalized interior frequency
k_ a for the contrast c+/c_= 0.6, and in Fig. 3 the
corresponding imaginary part is presented. The mode is
cut on when k?= h2, with k$= k!c+/c_ [which is the
straight dotted line), and this occurs at k_ a = 3.80, 3.78,
3.70, and 3.66 for corrugations d/a = 0.00,0.10, 0.20, and
0.30, respectively. Below cut-on, only th~ solution in the
straight waveguide is exponentially decreasing outside the
wall. The modes in the corrugated waveguides become
leaky and have not been further investigated. Above cut-on,
the modes are propagating for only a short frequency
range before the axial wavenumbers become complex, and
this occurs when the normalized @al wavenumber h/k-
equals n/k_ a. In the stopband around k_ a = 4.0, the
axial wavenumber h is constant ancl equals n/a (note that
we have plotted h/k_ and not just h), which is half the
wavenumber of the corrugations. This stopband corre-
sponds to the ordinary Bragg reflection, which couples
modes propagating in opposite directions. For increasing
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Fig. 2. The real part of the axial wavenumber as a function of the
interior frequency for corrugations d/a = 0.00, 0.10, 0.20, and 0.30 with
c+/c _ = 0.6.
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Fig. 3. The same as Fig. 2 but for the imaginary part.

corrugations, the imaginary part of h increqses in this
stopband, and the stopband also becomes broader. For
axial wavenumbers greater than n/k_ a, the solution be-
comes exponentially decreasing along the waveguide. In
Figs. 2 and 3, it is observed that the imaginary part does
not vanish in the region ~/k_ a < h/k_ < 2~\k _ a (that
is, from k_ a = 4.0 to = 7.0), even though it becomes
rather small just above the Bragg stopband.

When the axial wavenumber approaches 2n/a, that is,
h/k_ ~ 2m/k: a, the solution becomes exponentially in-
creasing ~utside S; i.e., at least one’ q. satisfies Im q. <0
and disappears from the plotted sheet. Accordingly, for
axial wavenumbers above 2~/a, which happens around
k_ a = 7.0, the solution is a leaky mode. The rpode in the
straight waveguide does not experience any such cutoff, of
course.

In Fig. 4, the real part of the axial wavenumber. is
presented, and in Fig. 5 the imaginary part is given for the
same corrugations as in Figs. 2 and 3 but in this case for
the contrast ~*/c_= 0.1. For this higher contrast, the
cut-on frequencies seem to be quite independent of the
corrugations considered and have decreased as compared
to the previous contrast. The location of the Bragg stop-
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Fig. 4. The real part of the axial wavenumber as a function of the
interior frequency for corrugations d/a = 0.00, 0.10, 0.20, and 0.30 with
(+/(_ = 0.1.

0 lo—

lm (h/k_]

o 08

0 06

0 04 -

0 02

Lo 0 02~
3 4 5 6

k.a 7 8

Fig. 5. The same as Fig. 4 but for the imaginary part

band has moved upwards and has broadened, and the

maximum imaginary parts have increased approximately

three times. (Note the different scales in Fig. 3 and Fig. 5.)

In contrast to the previous case, a frequency domain, in

which the solution is propagating, appears above the first

stopband. As mentioned above, the sufficient condition to

have an exponentially decreasing solution outside S is that

k+ < Ih + n m/a I for all integers n. For corrugation d/a=

0.10, the solution becomes exponentially decreasing along

the waveguide (Im h = O) at about the point k+= Ih – m/a 1,
and this occurs at k_ a = 5.47. But for the higher corruga-

tions, the imaginary parts differ from zero before the

sufficient condition above is violated, and for corrugation

d/a = 0.30 the mode even becomes propagating after this

second stopband before the sufficient condition is violated.

In Fig. 5, it can be observed that the real part has a

smoother appearance for the stopband limits associated

with the sufficient condition above than for the other

stopband limits. The beginning of the stopband for d/a =

0.20 at k: a = 5.37, and the entire stopband around k_ a

= 5.6 for d/a= 0.30 area result of a Bragg reflection, and

the stopband limits have the same edgy character as the

first stopband.

The only difference between the two types of Bragg

stopband is that the stopband around k_ a = 4.2 is a result

of an interaction between the lowest mode with itself

propagating in the opposite direction, but the second

stopband around k_ a = 5.6 is a result of an interaction of

the lowest mode with another mode. For a more careful

investigation of these two kinds of stopbands, we refer the

reader to Lundqvist and Bostrom [13].

In conclusion, we have demonstrated the usefulness of

the null-field approach for investigating corrugated dielec-

tric waveguides. This method also has the possibility of

introducing a finite cladding or other generalizations. Three

kinds of solutions are present in the numerical results.

Solutions which are exponentially decreasing outside the

waveguide can either be propagating or exponentially de-

creasing along the cylinder. The frequency regions where

the mode is nonpropagating are of two types: one due to

the ordinary Bragg-reflection condition and the other to

the condition that the mode be exponentially decreasing in

the cladding. Apart from these two kinds of solutions,

leaky modes exist and they are the only solutions found for

wavenumbers exceeding the wavenumbers of the wall cor-

rugation or belc)w cut-on.
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