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A Penetrable Dielectric Waveguide with
Periodically Varying Circular
Cross Section

S. LENNART G. LUNDQVIST

Abstract —For a penetrable dielectric waveguide with a periodically
varying circular cross section, the modes that are exponentially decreasing
in the cladding are considered. Their axial wavenumbers are determined by
the null field approach, and some plots are given showing their frequency
dependence. From the numerical results, it is observed that two modes
propagating in opposite directions interact destructively when the real parts
of their axial wavenumbers differ by a multiple of the wavenumber of the
corrugations. Both an upper and a lower cutoff frequency exists above
(below) which only leaky modes exist.

I. INTRODUCTION

N THE PRESENT PAPER, we study a penetrable

dielectric cylinder with a periodically varying circular
cross section. This waveguide, with interior dielectric con-
stant e_ and permeability p_, is embedded in an infinite
medium with the corresponding exterior constants ¢, and
B, where p e, <p_e_. The geometry is depicted in Fig.
1, where the wall is denoted by S and the outward unit
normal by 7.

We are primarily interested in guided waves, i.e., modes
that are exponentially decreasing outside S. These modes
can be of two types, either propagating or exponentially
decaying along the waveguide. The existence of frequency
domains in which no propagating modes exist is used in
practical devices such as the corrugated feedback laser [1].
For further practical applications and a more general
treatment of the two-dimensional corrugated waveguide,
we refer to Elachi and Yeh [2] and Peng et al [3]. In
addition to these two kinds of modes which are bounded
to the waveguide, there also exist leaky modes, which are
exponentially increasing outside S and have only a re-
stricted physical interpretation.

The straight dielectric waveguide has been addressed by
an extensive number of authors from both a theoretical
and an experimental point of view; we refer to Clarricoats
[4] and Marcuse [5] and the references cited therein. There
exist some recent investigations that consider dielectric
waveguides with a periodically varying circular cross sec-
tion [6], {7].

In the present paper, we make use of the null-field
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The geometry of the corrugated waveguide with the period of
the corrugations equal to the mean radius.

Fig. 1.

approach (7T-matrix method). This method was introduced
by Waterman [8], [9] for electromagnetic scattering prob-
lems and has also been extended to the scattering by a
periodic surface by the same author [10]. This method has
subsequently been used to investigate several different
problems involving corrugated surfaces [11]-[15]. In the
null-field approach, it is also possible to consider a scatterer
inside or outside the waveguide [16], [17] or a finite clad-
ding.

From the numerical results shown below, it is observed
that when the axial wavenumber exceeds the wavenumber
of the wall, all modes become leaky. Thus, the corrugation
introduces an upper cutoff frequency, above which no
exponentially decreasing (in the radial direction) solution
exists in the cladding. Furthermore, two types of stop-
bands exist, where the solution is exponentially decreasing
along the cylinder. The first one appears when the real
parts of two axial wavenumbers differ by a multiple of the
wavelength of the wall. The emergence of this type of
stopband is just an effect of the ordinary Bragg coupling
between modes propagating in opposite directions. In the
second type of stopband, the axial wavenumbers do not
satisfy any simple relation.

[I. METHOD OF SOLUTION

Consider a cylindrical surface S with periodically vary-
ing circular cross section and introduce cylindrical coordi-
nates (p, ¢, z). The surface is assumed penetrable, and all
quantities inside (outside) the cylinder will be indicated by
a minus (plus) sign. The time harmonic dependence e’
is assumed and suppressed throughout this paper. The
electric fields E  (¥') in a homogeneous, isotropic, lossless
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medium satisfy the homogeneous vector Helmholtz equa-
tion

v XX E(F)~kLE, (F) =0 M

where k2 =w% _ p,; €, are the dielectric constants and
p . the permeabilities. The boundary conditions at S re-
quire that the tangential parts of the electric and magnetic
fields be continuous

AXE (F)=AxE,(F)
Ax(vxE_(7)) =vax(v X E, (7)) (2)
where y=p_ /i, and 7 is the normal unit vector point-
ing from the boundary into the exterior domain. The
magnetic fields satisfy the same wave equation but with
y=¢€_/e, in the boundary condition. Since they are for-
mally equivalent, it is sufficient to only consider electric
fields explicitly.
The introduction of a unit source, or any superposition

of such sources, outside S and an application of Green’s
theorem in the two regions give

E(j+vxfct“» DA XE (7)) ds’

+k72V XV fo(?,?’;k+)
S

i x[v/ x E, (7)) dsz={E+(r Foutside S (3,
/ 0 7 inside S

-v X/G(" Pik_ YA X E_(7)ds’

—kIW XV fo(?, k)
S
ﬁ'X[V'xE’_(?')]dsz={E_(F’) Finside S gy
0 ¥ outside S

where E ' (F) is the incoming field from the sources and
G(F,7"; k) is the free-space Green function:

etk|r—r |

G(7, 7' k) = (4)
Now introduce the cylindrical vector wave functions X,
defined as

Xrom( s k5 F)

K iy s[5 ]
& S| ) ||

where €, =2- 38, ,; H denotes the Hankel function of
the first kind and order m; q = (k? — h?)!/? with Imq > 0;
=1, 2 (for TE and TM modes); and o = e, 0 [for cos(me)
and sin(m¢)]. For convenience, we will henceforth employ
the multi-index j= rom. The expansion of the free-space

Green dyadic is [16]
IG ( e -—», )

—zZ/ ReX|(h, kTR, (kKT

dnlr—7|

Vah+ 1, (6)

where Iirr is an irrotational dyadic; [is the unit dyadic;
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7. (7. ) denotes the 7, 7 with the smaller (greater) value of
p and p’; and Re) , 1s obtained from X , by replacing the
Hankel function by a Bessel function in (5). The dagger
indicates a shift from e'*’ to e~ "** before the curl op-
erators in (5) are applied. This dagger could equally well
be situated on X, as on Re¥,.

We expand the incoming field in {Re),} inside the
inscribed cylinder of S

. ® dh
E()=L[ a(mRex,(hkif)z= ()

and the scattered field in {¥X,} outside the circumscribed
cylinder of S

BL() = B ()= EL() =X [ {0R, (b ki) o
©

where the poles of f,(#) will eventually determine the axial
wavenumbers of the guided waves. We insert the expan-
sion of the incoming field into the lower equation of (3a),
the expansion of the scattered field into the upper equa-
tion of (3a), the boundary conditions into the lower equa-
tion of (3b), and the expansion of the Green function into
both of the integral representations. The resulting relations
are

w dh
%:f_waj(h)Rexj(h,kJr;r)—k:-
——v xfsizf_wwRezj(h,k+;f‘)z;?(h,h;w)
[#' x B, (7)) dnds’ —k7>v x v

X[Sszw Rex,(h, k.3 F)XI(h, Ky 77)
d

U=

a'x(v'XE,(7) ] dnds’  7inside S

| poo dh
L[ B, (ke 7)
[oo]
= Xj;i?f~wxj(h,k+;r)Reij(h,kJr;r’)
-[ﬁ' X Ii(?’)] dhds’ + k7°v XV
Xj;i%‘,f_wfj(h,k+;?)Ref;f(h,k+;?’)
farx(v'x E,(7))] dnds’  Foutside §
*® =27
-V ><L}j_:f_wxj(h,k_;r)Rex}(h,k_;r )
A x E, (7)) ands’

=k XV foEf_w X,;(h,k_;7)
~J)

)[4 x (v’ x E, (7)) dnds’
Foutside S. (9)

Re;"{;.f(h,k_;?’
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From the definition of the cylindrical vector wave func-
tions, it follows that
V Xirom(h’k; ?)=kzr’om(h’k; ?) (10)

with 7/ # 7. The linear independence of the {X;} and
{ReX,} systems then implies

—ik f[v XX
—ik+fs>z’j(h,k+;7')-[ﬁ'x

a,(h)= (ke 7)) (A x B, (7)) s’

(v/xE,(7))] as’

£ (h) =ik f v/ xRex{(h k,; 7)]-[4 x E, (7)] a5’

+ik+fRe5<’j(h,k+;?')
S
Jax(vx E, (7))

fs[v'XRe;z'j(h,k_;?')]-[fﬂxi(?/)] ds

Jas

(v’xﬁ(?’))] ds’.
(11)

We now expand the surface fields appearing in these
equations in some complete systems

= — yf Re;'(j(h, k_;7)- [ﬁ’ X
s

A’ X [v’ X E, (?’)]

= [ a, ()

pred

b [ B

4

oo L. . dn
A x E,(7) =Zf wﬁj,(h’)ﬁ’xgj/f(h’;r’) p (12)
J T

+

The systems {f;"‘} and {ff} can, for instance, be selected
as the trigonometric system

12| cos(me) | _
(€/87) [Sln(m¢)] $ T=1

12| cos(me) | . _
(€,,/87) [sin(mcb)}e nX ¢ T=2

§= (13)

the regular system

§=Rex, (k) (14a)

or the outgoing system

=)_(>,(k+)-

The expansion (14a) gives a valid representation of the
field in the whole interior domain and (14b) is valid in the
whole exterior domain (cf. Millar [18]).

By inserting the expanded fields in (11), the coefficients

(14b)
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of the incoming and scattered fields become

a,(h)=i% [~ [0t (hh)B, ()
7 co
+Q8 (h,h)ay

f(y==i% [~ [ReQtr
j’ =0

(h,h")B,(h")

dh’
+Re Q% (h, h") e, ()] p

0=Y [” [ReQf (h, 1")B, (1)
_], — o0

dh’
+yRe Q%7 (b, h")e, (h')] p (15)
+

where

<E(h b)) =~ k, f
-[ﬁ’x(v’xf}’f(h’;?’))] ds’
QP (h, ') = —kifs[v'x)‘{j(h,ki;?’)]

A x g8 (n; 7)) as’ (16)

and in ReQ ,ReX replaces X . Eliminating the « — and
B — coefficients in (15) gives the scattered field in terms of
the incoming field, and this relation can be written as (in
obvious operator notation)

F=[YRe 0" (Re0#") 'ReQ*" ~Re Q"]

|7 v0r* (Re@# ) "ReQ* + 0] @ (17)
Thus, the scattering problem is formally solved. The poles

of f,(h) determine the axial wavenumbers % of the guided
waves [11] and will occur where

det(yQ#* (Re Q™) 'ReQ*~ — Q" )(h) =0. (18)

The computation of the Q matrix is discussed by
Bostrom [11], so only the final results are given here. The
rotational symmetry of this specific problem gives a decou-
pling between even (76 =10,2¢) and odd (76 =1e,20)
modes and a Kronecker delta 6, when the azimuthal
integration is performed. The periodicity in the z direction
makes it possible to reduce the integration to one period
(—a, a), and after a few substitutions, the @ matrices
reappear as

Ozs (h) = —kum/af” zrm(h+nw/a,ki;z)

(kg 77)

Jax(v x &, (h+n'n/a; z)) —

p

QW (h) =~ kum/a [ [9 XZh,(h+nn/a,k ; 2)]

. [ﬁ XEEE(h+n'n/a; z)] Z—Z

p

(19)
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where n, = = 7i-p; the ¢ dependence of g“ and X is to be
omitted; the azimuthal parity is suppressed and n and n’
run over all integers.

The axial wavenumber s of .the guided waves is not
unique, since if 4 gives a solution, then h + nx/a (for any
n) will also give a solution. For small corrugations, Marcuse
and Derosier [19] have proved that modes become ex-
ponentially decreasing along the cylinder when their axial
wavenumbers differ by a multiple of the wavelength of the
wall (nm/a) and that they propagate in opposite direc-
tions.

The essential part of the exterior wave can be wntten as
a summation of terms of the form

HP(g,0)e™™* forn=0,1,-1,2,~2,--- (20)

where the arguments in the Hankel functions are g2 = k2
—(h + nm/a)?. In order to have an exponentially decreas-
ing mode outside the cylinder, it is sufficient that Img, > 0
for all n. If the imaginary part of & is zero, (h+ nw/a)?
must be greater than k2 for all n, which is only possible
for k-, less than 7/2a.

III. NUMERICAL RESULTS

For the numerical illustrations, we have taken the wall

corrugation to vary sinusoidally, with  the period of the
corrugations equal to the mean radius:

p(z)—a+dcos(2wz/a) (21)

Further, we 1mpose the commonly valid restnctlon po=p +
and only investigate the axially symmetric mode of lowest
order. Four different corrugations are considered: d/a =
0.00, 0.10, 0.20, and 0.30; in the figures, they are denoted
by 0, 1, 2, and 3, respectively. For the plotted solutions, all
q,= (k% —(h+nn/a)*)*/? have Imq, >0, which implies
that the solutions are exponentially decreasing outside- S.
For a computation of leaky modes with Im g, < 0 for some
n, we refer to Lundqvist [12], where the exterior acoustic
problem is investigated.

In Fig. 2, the real part of the axial wavenumber is
plotted as a function of the normalized. 1nter1or frequency
k_a for the contrast ¢, /e_=06, and in Fig. 3 the
corresponding imaginary part is presented. The mode is
cut on when k2 =h? with k2 ="k2%e, /e_ (which is the
straight dotted. 11ne) and this occurs at k_a=3.80, 3.78,
3.70, and 3.66 for corrugations d /a = 0.00, 0. 10 0.20, and
0.30, respectively. Below cut-on, only the solution in thé
straight waveguide is exponentially decreasing outside the
wall. The modes in the corrugated waveguides become
leaky and have not been further investigated. Above cut-on,
the modes are propagating for only a short frequency
range before the axial wavenumbers become complex, and
this occurs when the normalized axial wavenumber h /k_
equals #/k_a. In the stopband around k_a=4.0, the
axial wavenumber 4 is constant and. equals 7/a (note that
we have plotted 4 /k_ and not just k), which is half the

wavenumber of the corrugations. This stopband corre-

sponds to the ordinary Bragg re_flectlon, which couples
modes propagating in opposite directions. For increasing

285

1.00

o Re(h/k.)
0.85f E

0.80r

Ke/Ke

0.75}¢

0.70 i L L .
3 4 5 8 . 7 8
Flg 2. The real part of the axial wavenumber 2s a function of the
interior frequency for corrugations d /a = 0.00, 0.10, 0.20, and 0.30 with

€, /e.=06.
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Fig. 3. The same as Flg 2 but for the imaginary part.

corrugations, the imaginary part of h increases in this
stopband, and the stopband- also becomes broader. For
axial wavenumbers greater than 7/k_a, the solution be-
comes exponentially decreasing along the waveguide. In
Figs. 2. and 3, it is observed that the 1mag1nary part does
not vamsh in the region m/k_a<h /k <2w/k_a (that
is, from k_a=40 to =70), even though it becomes
rather small just above the Bragg stopband.

When the axial wavenumber approaches 27/a, that is,
h/k_—2x/k_a, the solu’uon, becomes exponentially in-
creasing outside S; i.e., at least one g, satisfies Img, <0
and disappears from the plotted sheet. Accordingly, for
axial wavenumbers above 27/a, which happens around
k_a="17.0, the solution is a leaky mode. The mode in the
straight waveguide does not expe‘rience any such cutoff, of -
course. -

In Fig. 4, the real part - of . the axial wavenumber is
presented and in Fig. 5 the imaginary part is given for the
same corrugauons as in Figs. 2 and' 3 but in this case for
the contrast ¢, /e_=0.1. For thlS higher contrast, the

cut-on frequencies - seem to be quite independent of the
corrugations considered and have decreased as compared
to the prev10us contrast. The location of the Bragg stop-
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Fig. 4. The real part of the axial wavenumber as a function of the
interior frequency for corrugations d /a = 0.00, 0.10, 0.20, and 0.30 with
e, /e_=01
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Fig. 5. The same as Fig. 4 but for the imaginary part.

band has moved upwards and has broadened, and the
maximum imaginary parts have increased approximately
three times. (Note the different scales in Fig. 3 and Fig. 5.)

In contrast to the previous case, a frequency domain, in
which the solution is propagating, appears above the first
stopband. As mentioned above, the sufficient condition to
have an exponentially decreasing solution outside S is that
k., <|h+ nm/aj for all integers n. For corrugation d/a =
0.10, the solution becomes exponentially decreasing along
the waveguide (Im A = 0) at about the point k , = |h — 7/al,
and this occurs at k_a = 5.47. But for the higher corruga-
tions, the imaginary parts differ from zero before the
sufficient condition above is violated, and for corrugation
d /a = 0.30 the mode even becomes propagating after this
second stopband before the sufficient condition is violated.
In Fig. 5, it can be observed that the real part has a
smoother appearance for the stopband limits associated
with the sufficient condition above than for the other
stopband limits. The beginning of the stopband for d /a =
0.20 at k_a =5.37, and the entire stopband around k_a
= 5.6 for d /a = 0.30 are a result of a Bragg reflection, and
the stopband limits have the same edgy character as the
first stopband.

The only difference between the two types of Bragg
stopband is that the stopband around k_a = 4.2 is a result
of an interaction between the lowest mode with itself
propagating in the opposite direction, but the second
stopband around k_a = 5.6 is a result of an interaction of
the lowest mode with another mode. For a more careful
investigation of these two kinds of stopbands, we refer the
reader to Lundqvist and Bostrom [13].

In conclusion, we have demonstrated the usefulness of
the null-field approach for investigating corrugated dielec-
tric waveguides. This method also has the possibility of
introducing a finite cladding or other generalizations. Three
kinds of solutions are present in the numerical results.
Solutions which are exponentially decreasing outside the
waveguide can either be propagating or exponentially de-
creasing along the cylinder. The frequency regions where
the mode is nonpropagating are of two types: one due to
the ordinary Bragg-reflection condition and the other to
the condition that the mode be exponentially decreasing in
the cladding. Apart from these two kinds of solutions,
leaky modes exist and they are the only solutions found for
wavenumbers exceeding the wavenumbers of the wall cor-
rugation or below cut-on.
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